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Plate-injection into a separated supersonic boundary 
layer. Part 2. The transition regions 

By K. STEWARTSON 
Department of Aeronautical and Astronautical Engineering, 

The Ohio State University, Columbust 

(Received 14 August 1973) 

The model proposed by Smith & Stewartson (1973), to describe the separated 
boundary layer induced by strong injection over a finite length of a flat plate 
in a supersonic mainstream, is shown to provide the basis for a fully consistent 
solution of the Navier-Stokes equations for this problem, valid in the limit of 
infinite Reynolds number. The solution takes the form of asymptotic expansions 
in each of a large number of overlapping regions of the flow field, which are 
consistently matched across areas of common validity. 

1. Introduction 
Apart from its practical value, as a means of effecting a reduction in heat 

transfer or of blowing off the boundary layer, the injection problem of injecting 
fluid across a permeable wall has considerable mathematical interest too. 
It seems to provide the simplest example of a flow field involving separation 
for which an asymptotic solution of the Navier-Stokes equations uniformly 
valid in the limit of infinite Reynolds number can be written down. In  an earlier 
paper (Smith & Stewartson 1973) with the same principal title, and which we 
shall subsequently refer to as P, a suggested model for the flow field was described 
and is shown schematically in figure 1. Here the wall is a fixed flat plate occupying 
the part 0 < x* < L of the x* axis of a Cartesian co-ordinate system Ox*y*. At 
a large distance upstream the fluid is assumed to be in uniform motion with 
velocity U 2 parallel to Ox* and with Mach number Ma satisfying the condition 
Ma > 1 for a supersonic flow. The suffixes a3 and w are used to indicate conditions 
far upstream and on the plate respectively. For example, the plate is assumed 
to be maintained at  a constant temperature TZ. Fluid is injected into the region 
y:k > 0 above the plate, from the part 0 < xt < x* < xT < L, with uniform 
velocity V z  and at a constant density p; = p*, T*,/T& i.e. at  the ambient density 
(and also pressure, as we shall see, for V$ < U:). A laminar boundary layer is 
formed in the vicinity of 0 and is assumed to separate at the point (x:, 0) ,  
where x,* < xt , thereafter forming a detached shear layer. We define the Reynolds 
number as 

where v* is the kinematic viscosity, and assume that 0 < e < 1. With the further 
assumption that V: = O(e3U:) we claim that the solution of the fill1 Navier- 
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Re = U z x z I v $  = e-8, (1.1) 
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FIGURE 1. The various regions of the flow field. 

Stokes equations, subject to the appropriate boundary conditions for this 
problem, can be regarded as a combination of solutions in a (large) number 
of overlapping regions, each of which may be written down as a series of ascending 
powers of E (and possibly also of log E eventually) whose coefficients are functions 
of certain appropriately scaled spatial variables. Further, these functions are 
found by the solution of partial differential equations and satisfying appropriate 
boundary conditions in which the parameter 8 is explicitly absent. 

Proceeding downstream, the first of these regions (I) is the neighbourhood 
of 0, where Ix*(, Iy*l = O(x:s4), and the fundamental problem here is the solu- 
tion of the full Navier-Stokes equations for a semi-infinite flat plate. Such a solu- 
tion is not yet available, but the corresponding solution for an incompressihle 
fluid has been computed by Van de Vooren & Dijkstra (1970). A substantially 
greater computational effort is needed to extend their study to  a compressible 
fluid. I n  addition the solution is probably not unique when M, > 1 without 
some downstream restriction on the pressure in view of the possibility of self- 
induced separation (Stewartson & Williams 1969). Otherwise there does not 
appear to be any difficulty in principle in carrying out the extension. 

The second region (11) is the boundary layer ahead of separation (0 < x* < x,*) 
and is well understood. 

The third region (111) is the neighbourhood of separation and here a systematic 
expansion procedure has been worked out (Neiland 1969; Stewartson & Williams 
1969; Stewartson 1974) based on the Lighthill (1953) model and involving 
a triple-deck structure. It extends for a distance O(e3x.,*) upstream and down- 
stream of .,* and is subdivided laterally into three decks of thicknesses e5x:, 
e4x: and e3x.,*. The lower deck, of thickness e5x.,*, is the only one in which extensive 
numerical computation is required, the others involving no more than quad- 
ratures. It is found to be capable of separating spontaneously, provided only 
that the associated pressure rise is permitted by the flow properties further 
downstream of 111. Once the position of separation x.,* is fixed, the solution of the 
equation of the lower deck upstream of separat,ion is unique, the mathematical 
problem being well posed. Downstream of separation, however, the uniqueness 
is lost without an extra condition, on that part of the velocity profile which is 
reversed in direction, a t  some station of x* > x,* since small disturbances can 
propagate in the direction of x* decreasing through the reversed flow a t  the 
bottom of the lower deck. In  the initial attack on the problem it was decided, 
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intuitively, to look for solutions in which the relative magnitude of the reversed 
velocity becomes vanishingly small as (x* - x,*)/e34! -+ co; when P was written 
sufficient numerical evidence was available to suggest to the authors that the 
hypothesis is reasonable. Subsequently Stewartson & Williams ( 1973) were able 
to set up a completely consistent asymptotic expansion for the solution in the 
lower deck, valid, on this hypothesis, in the limit (x* - xf)/e3xz -+ co, and in 5 2 
below we shall describe its main properties. Later Williams (1974) refined his 
numerical procedure and was able to make a favourable comparison with this 
expansion. It is claimed that a complete description of the separation region is 
now available, subject of course to the hypothesis mentioned above. Through 
the courtesy of Professor A. F. Messiter, the author has recently learned that 
the leading term in the asymptotic expansion had been worked out at  an earlier 
date, by Nieland (1971). 

The next region (IV) is the plateau in which the original boundary layer 
detaches from the wall, becoming a free shear layer inclined to i t  at  a constant 
angle O(e2) and separating the oncoming inviscid supersonic flow above from 
the slow reversed flow below. The pressure is almost constant, following the rise 
O(e2pz) through the triple deck at separation, hence the name plateau for IV, 
but there is a weak positive pressure gradient O(&p)*m/x:) which serves to drive 
the fluid near the wall in the direction of x* decreasing and towards x,*. The 
flow properties in IV are studied in $9 3 and 5. 

In  order to compute the reversed velocity in IV an initial profile is required 
at  the downstream end of the region and the associated mass flux is provided by 
a short length of the permeable part of the plate. A fifth region (V) is therefore 
needed in the neighbourhood of x$, in which some of the injected fluid is turned 
in the direction of x* decreasing. We shall study its properties in $ 4  and establish 
that its streamwise extent is O(eL). It is noted that the injected fluid which moves 
upstream into the reversed-flow part of I V  is eventually entrained into the 
detached shear layer and swept downstream. 

The next region (VI) comprises the majority of the injection region of the 
plate (x,* < x* < xT) and has been studied in P. The further details about the 
flow properties provided in this paper do not affect the solutions given there, to 
leading order, and there does not appear to be any difficulty in principle about 
taking them into account in the higher-order terms of the asymptotic expansion 
of the solution in powers of e. 

A critical assumption made in the discussion of the solution in VI is that the 
pressure at ZT is equal to p*,, if terms O(e3p2) are neglected. This means that, 
at x* = xt, the pressure gradient is discontinuous and so another transition region 
(VII) is needed to smooth it out. This region also straightens out the streamlines 
in the lower part of the boundary layer and gives birth to a sub-boundary layer 
of thickness O ( E ~ ~ / ~ X ; ) .  The properties of region V I I  are discussed in 5 6. 

The remaining regions downstream of XT have much in common with those 
occurring in the study of the boundary layer on an impermeable finite flat plate 
(trailing edge, a rear wake, far wake, etc.), and their properties follow in a similar 
way. A detailed discussion does not seem called for here and the reader is re- 
ferred to Stewartson (1974) for further information. 

19-2 
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FIGURE 2. The subregions of I11 (the triple deck). 

2. The terminal structure of the triple deck at separation 
The streamwise extent and total width of the triple deck are both O(e3x:) 

and it divides laterally into three decks of which the upper deck consists of 
fluid originally (x* < a$) outside the boundary layer. In  this deck the velocity 
perturbation from the original uniform state is O(e2Uz) ,  and since its width is 
O(e3xz) ,  the governing equations reduce to the Prandtl-Glauert equation of 
linearized inviscid supersonic flow. The main deck, of thickness O(&x,*), lies 
below the upper deck, occupying a relatively small part of the triple-deck region, 
and the fluid moving through it came originally from the boundary layer. This 
fluid behaves passively, being merely lifted up by the expansion of the lower 
deck below it, and the induced pressure gradient is relatively insignificant. The 
lower deck, of thickness O(e5xz),  lies below the main deck and in turn occupies 
a small part of the triple deck, even relative to the main deck. The fluid motion 
in the lower deck is controlled by the incompressible boundary-layer equations, 
but with novel boundary conditions. Of these the most interesting is that the 
pressure gradient is linked to overall properties of the solution through the 
interaction between the three decks. One immediate consequence is that a 
singularity in the solution at separation is impossible and there is instead a smooth 
evolution of the velocity profile from a uniform shear into one which is partly 
reversed. 

When (x* - x,*)/c3xz is large and positive but (x* - x,:)/x: is small, i.e. at the 
downstream limit of validity of the triple deck, region 111, it subdivides further 
into five subregions as shown in figure 2. From the asymptotic studies of Neiland 
(1971) and Stewartson & Williams (1973), and using the numerical data of 
Williams (1974), we may describe the flow properties as follows. Let (u*, v*) 
be the velocity components along the (x*, y*) directions respectively. Then, 
working down towards the plate, we have, successively, the following subregions. 

Subregion 111, (the upper deck) 

This is defined by y* = O(x* - x,*) and the flow properties are 

u*/u: = i - [~ ,G/(M:  - 1 ) q  + 0 ( € 3 ) ,  

v*/u: = €201,+0(€3), 

p* = p: + [cI,~~,o: u:~/(M: - 1)9] + 0 ( € 3 ) ,  
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where go = h*C*(M2, - l)*&. (2.2) 

We note at  this point that the fluid is assumed to satisfy Chapman’s viscosity 
law and that C is Chapman’s constant, the Prandtl number is taken to be unity, 
A = 0.3321, and Po is a numerical constant the best estimate for which is 1.79 
(Williams 1974). Previous estimates (e.g. in P) gave Po = 1.8. Thus, a t  the down- 
stream end of the triple deck, the fluid in I11 is moving with uniform velocity 
in a direction making an angle with the plate (y* = 0). 

Subregion 111, (the main deck) 

This is defined by j j 3  = O( l), where j j 3  = y*/e4x:, and the flow properties are 

u*/uz = U2(jj3, - su;(jj3) ao(x* - X,*)/€ x, 
v*/u: = ~u,(jj,) go + 0(€3),  *+**a21  (2-3) 

with p* as in (2.1). Here U2 is the undisturbed velocity profile in the boundary 
layer just upstream of the triple deck. A more revealing form of u* in 111, is 

where 

which shows that the principal change is not in the velocity profile, but in the 
direction of the streamlines in the main deck, now seen to be inclined to the 
plate at an angle aOe2, just as in 111,. 

Subregion 111, (top part of the lower deck) 

This is defined by y3 = O[{(x* -x,*)/xz}*] and the flow properties are 

u* = d j * , A ~ x ~ G ~ ( t 3 ) ,  (2.5) 

where 

and G t + Z G  3 0 0  G”-I(J’2 3 0  == 0 (2.6) 

with G b + l  as <3-+m, GA+0 as &33-m. 

There is an equivalent form for v*. From the forms taken by u* in 111, and III,, 
it is clear that, as x* increases further, they may be combined into one region 
in which the original boundary layer (in 11) becomes a free shear layer bounded 
on one side by a uniform stream and on the other by fluid which is virtually at  
rest. 

Subregion 111, (central part of lower deck) 

This is defined by 0 < y*/s2ao(x* - x,*) < 1 and the fluid velocityIis reversed in 
direction, being given by 

where Co = - Go( - 00) = 1.252. The fluid density in II1,is the same as the density 
& at the wall, so that v* follows from the equation of continuity for an incom- 
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s: 

FIGURE 3. The subregions of IV (the plateau). 

pressible fluid. The pressure variation follows from the z* component of the 
momentum equation and we obtain 

(2.8) 

This equation also holds in the other subregions and shows how the limiting 
form in (2.1) is approached as x3 + a. A final point about 111, is that viscous 
forces are not significant. 

Subregion 111, (bottom of lower deck) 

This region is defined by y* = O(E~(X*--;)*X,"*) and viscous forces are im- 
portant here since the slip velocity implied by (2.7) must be reduced to zero at  
the plate. The appropriate structure is defined by the self-similar solution of the 
incompressible boundary-layer equations corresponding to a mainstream velocity 
(2.7). 

3. The structure of region IV. Part 1 
We postulate that region IV, comprising that part of the plate between the 

triple deck a t  z,* and a transition region near xt, the point at  which injection 
begins, may itself be subdivided into four parts as shown in figure 3. 

(a)  Subregion IV,, which is a continuation of 111, and has the same properties, 
namely that the fluid is in uniform motion inclined at an angle aoe2 to the plate 
and the velocity components and pressure are given by (2.1). 

(b )  Subregion IV,, which is tt shear layer of thickness O(e4x:) in the neighbour- 
hood of the straight line y* = a 0 e 2 ( x * - x ~ ) .  

(c) Subregion IV,, which occupies the majority of the area between IV, and 
the plate and in which the x* component of velocity is O(c2Uz)  and directed in 
the opposite direction from that in IV,. Viscous forces are negligible here. 

( d )  Subregion IV,, which is a viscous sub-boundary layer of thickness O(e3x:) 
adjacent to the plate, whose purpose is to remove the slip velocity at the bottom 

We begin a more detailed account of the properties of these subregions with 
IV,. Since the shear layer here is O(e4xz) in width, while it extends downstream 

of IV,. 
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a distance O(L) a,nd remains close to the line 0 = yz = c?xz y3, the evolution of 
the shear layer must be determined by the solution of the boundary-layer 
equations 

where 

together with a similar equation for T*. The associated boundary conditions are 

(3.2) 
u*+ U:,O, T*+TZ,TZ as yz+s.co, 

u* = U z  U2(y3), T* = TZ Tz(y3) at x* = x,*, 

v: = v* - €2cXOU*, 

1 
where U 2 U, and TZ Tz are the velocity and temperature profiles in the boundary 
layer at the downstream end (x* = x,*) of region 11. The last conditions of (3.2) 
are expressions of the need for the forms of u* and T* in IV, to be continuous 
with those in 11. The flow properties in 111, make this need evident. Equations 
(3.1) simplify on writing 

and using the Chapman viscosity law, when they reduce to a single equation for 
$4, independent of T", namely 

(3.4) 

together with the boundary conditions 

and = 1; Uz(y4)dy4 at x4 = 0. 

The equation for T* is similar to (3.4) but we do not need it here. 
The solution of (3.4), subject to (3.5) and (3.6), was kindly obtained for the 

author by Mr P. G. Daniels using a method devised by Smith (1974). The solu- 
tion is not unique because an arbitrary function of x4 may be added to y,, without 
disturbing either the equations or the boundary conditions, provided only that 
it vanishes at  x, = 0. This is as i t  should be for the position of the shear layer is 
intrinsically indeterminate to O(c4x:) and is fixed by the weak pressure gradient 
which drives the fluid in IV,. When 0 < x4 < 1 the solution can be obtained as 
a double-structured expansion, parallel to that worked out by Goldstein (1930) 
€or the near-wake velocity field behind a finite flat plate. The main difference 
is the change in boundary conditions from a@.,/ay, + 0 as y4 +- co to 

$4 = a2$4/ay; = 0 at  y4 = 0, 

but the formal expansions in each of the two subregions are the same. The 
leading terms in the present problem are identical with the leading terms of 
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2 4  VE x4 VE 

0.000250 9.001 1.9046 0.369 
0.00675 2.966 7,605 0.205 
0.03 125 1.773 13.05 0.160 
0.1 1864 1.121 25.13 0.117 
0.5001 0.660 49.01 0.085 
0.9861 0.500 

TABLE 1 

the expansions in 111, and 111,, due allowance being made for the different 
scaling laws adopted, showing that there is a consistent match so far with 
region 111. 

The most important feature of the solution is the entrainment velocity 

which is uniquely defined and tells us how much fluid is needed from IV, to 
feed the shear layer. A set of representative values of wE derived from Mr Daniel’s 
computations is displayed in table 1. 

In  physical terms the entrainment velocity is 

1 
e 4 U : C f g  WE{(.* -x,*)/xs*> 

I &  

and for a match with lV, it is essential that, in IV,, w* should take on this value 
when y* = C ~ ~ E ~ ( X *  -x,*). At large values of x4 the solution of (3.4) takes on the 
self-similar form described by Chapman (1950) in his discussion of mixing layers 
and wEx$ tends to the limit 0.619 as x4 + 00. A useful approximate formula for 
eE, valid when x4 is either large or small and in error by about 5 % a t  x4 = 1, is 

eE 21 0 * 6 1 9 ~ y * ( ~ , +  1.150)-&. (3.9) 

It is noted that this shear layer continues beyond the end of IV into regions V- 
VIII, where it is finally parallel to the plate again. With an appropriate modifica- 
tion to the definition of y,*, the governing equations and boundary conditions 
are still vaIid in these regions. In  accordance with Chapman’s mixing-layer theory 
its width is proportional to x$ when x4 9 1 and hence for the plate to modify its 
structure it is necessary that x*/xz be large. 

Next we consider IV,. This subregion is bounded above by the straight line 
y: = 0, i.e. y* = e2a0(x* - x,*), below by the straight line y* = 0, and extends as 
far as x* = xz. Transition regions occur in the neighbourhood of y* = 0 and 
of x* = x:, which we shall discuss in $0 4 and 5.  The shape of the boundary to 
lV3 suggests that the appropriate length scales are O($) and O(e2x,*) in the 
x* and y* directions respectively. Further, the entrainment velocity required 
by IV, suggests that w* = O(e4U2) and this in turn implies that u* = O(e2U$). 
These velocity components are also of the right order of magnitude to match 
with the velocity components in 111,. Thus from (2.7), u* = O ( e 2 U z )  when 
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I 

FIGURE 4. The subregions of V (the onset of blowing). 

e3x3 = x4 = O(1). In  addition, p and T are constant in IV, and equal to their 
values at the plate since Iu*/Uzl < 1. 

(3.10) i x* - x,* = x,* x4, y* = €".,* r,, 
u* = E2U:U4(X4,Y4), v* = I24u:v4, 

Write 

p* -p: = [(p: U:2a0E2)/(M: - 1 ) q  +p: V2dP4(x4,Y4).  

Then on substituting into the full equations of motion and letting 6 + 0 we 

The boundary conditions are 

0 when Y4= 0,  x4 > 0 ;  

v4 = L v  E (  x T:/TZ when Y4 = aox4; 

in addition we need an initial condition on u4 at the junction with the transition 
region at the beginning of the permeable part of the plate, since u4 < 0 in IV,. 
Specifically if x$ -x,* = ~?~x,*/a,,, where 8, is a constant, assumed to be of order 
one but determined by the overall injection into the boundary layer, we need 
to know the value T?,(Y4) of u4 when x4 = So/ae and 0 < y4 < So. We shall derive 
a formula for U, in the next section and return to the discussion of I V  a,fterwards. 

4. The structure of region V 
The various subregions of V are shown in figure 4. Of these, V,, being the con- 

tinuation of the inviscid subregion IV,, and V,, being the continuation of the 
shear layer IV,, require little discussion since their properties hardly change and 
their effect on the subregion below is relatively small. Their boundaries appear 
to be parallel to the plate in 6gure 4 because of the spatial scaling adopted. 
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The subregion V, is of significance for the determination of the value of U5(Y4), 
the missing boundary condition needed to complete the specification of IV. 
Pluid is injected at  a uniform velocity e3Vw U$ into this subregion downstream 
from x" = x: and some of this fluid must travel upstream into IV, and from 
there be entrained into I V 2  and swept downstream, since none can penetrate 
beyond xz .  It follows that the fluid injected over a length O(sx:) moves upstream 
and this suggests that the transition region is O(exjf;) in length. Hence since 
v* = O(s3U5) at the wall in x* > xt, u* = O(e2Uz)  in V, and so we write 

(4.1) I x* = x: + E X $ X 5 ,  y" = E2X:Y5,  

u* = €2u:u5(x5,Y5), v* = € : 3 U ~ V 5 ( X 5 , y 5 ) ,  

(P* - -P:) /Uzz  = (e"Op:/(M: - 1-)it) +p:e4P5(X5, Y5), 

and take p and T constant and equal to their values at  the plate. The governing 
equations are then the same as (3.11) with the suffix 5 replacing 4 and boundary 
conditions are 

(4.2) 
v5={ 0 at Y5 = So, where x,* 8, = a,(x,* - x, * I  ). 

O,V, at y5 = 0, x5: 0 ,  

The reader is reminded that while x: is prescribed as the point on the plate 
where blowing begins, x,* is one of the parameters of the problem that has to be 
determined, and depends both on the rate of injection and on the length of 
blowing. A first approximation to its value, sufficient for the present purposes, 
is given in P and so we may now take 8, as given. In  order to complete the 
specification of the solutions in V, we need the mass flux of fluid into IV, and 
this is 

Hence the length 2, of blowing required to supply this mass flux is given by 

The solution now follows familiar lines. If Y5 is the stream function of the flow 
field in V,, so that Y 5 ( x 5 ,  0) = 0 if x5 < 0 and Y5(x5 ,  0) = -V,x5 if x5 > 0, then 

3 4  = -P5(x5) +f(Y5) (4.5) 

and the arbitrary function f is determined by the condition that u5 = 0 when 
Y5 = 0. Hence f(Y5) = P5(t5), ( t5 ,  0 )  being the point where the streamline through 
(x5, Y5) emerges from the plate. We then have 

when x5 > ?t5, since the fluid is then moving in the direction of x5 increasing. 
The solution of this integral equation is 

P5 = - (n2v;/SS;) (x5 - X 5 ) 2  (4.7) 
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apart from an arbitrary constant which cannot be determined a t  present. The 
expansion in powers of E would have to be carried further in selected subregions 
of the flow field before a value could be assigned to this constant. When x5 9 1, 
equation (4.7) matches with the solution given in P for region VI when 

On the other hand, when x5 < X5 the corresponding formula for 8, is 
(x" - x,*)/xs* < 1. 

where Y o  = -&x5 if x5 > 0 and Yo = 0 if x5 < 0. The lower limit of integration 
expresses the fact that no fluid injected into V, if x5 < 0. The negative sign 
precedes the integral in (4.8) because u5 < 0, the injected fluid moving upstream 
towards IV,. The solution of (4.8) is the same as (4.7) if x5 > 0, but if x, < 0, 
P5 is constant and equal to its value at  x5 = 0, according to (4.7). 

The corresponding values of u5 are 

("K . 7rY5 sr (x5 - X5) sin if x5 > 0, 

rKE5 7Tyg if x5 < 0, 
sin - 

(4.9) 

(4.10) 

which gives us U,(Y,), the initial condition on u, needed to complete the specifica- 
tion of IV,, Y, being equal to Y5 at matching. 

It is noted that there is a discontinuity in v5 and in the pressure gradient at  
x5 = 0 which necessitate another interior layer of length O(e2xz) to smooth them 
out. The elucidation of the structure of this layer seems to follow similar lines 
to those of subregion VII, discussed in 8 6 below and does not need further com- 
ment. Since u5 = 0 at Y5 = 0 for all x6 no boundary layer is needed a t  this stage, 
but on continuing the expansion a slip velocity appears at  the next sfage. The 
ensuing boundary layer has a structure somewhat similar to that of VII, below. 
Finally, within a distance O(e4x,*) of the point (x;, 0) all these expansionschemes 
must fail and a central region be considered where the full Navier-Stokes equa- 
tions need to be solved. 

5. The structure of region IV. Part 2 
Having obtained the value of u, at x4 = 8,/ao in the previous section, we may 

now complete the discussion of the flow properties in region IV. We define the 
stream function Y,(x,, Y,) in IV, from the equation of continuity in (3.11) and 
take Y, = 0 when Y, = 0, 0 < x, < &,/ao. Then the terminal condition (4.10) on 
u, becomes 

u ~ + ( 7 r 2 / 4 8 ~ ) ( Y ~ + 2 ~ X 5 Y 4 )  = 0 at x4 = 8,/a0 (0 < Y4 < a0). (5.1) 

All streamlines in this subregion pass through the part 0 < & c 8, of the 
line x4 = 8,/ao and hence on any such streamline 

u; = - 2P4(x4) + 2P4(8,/a,) - (r2/4St) (Yi + 2T.7,X,'P4). (5 .2 )  
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Further the streamline IF4 = q4 leaves IV, by entering IV, at a value of x4 
such that 

T”, = -- a VE(X4)dX4. 
T*, Tz  so” (5.3) 

(5.4) 

where Q2 = (8&Yn2) [P4(So/ao) -P4(Xq)I + (V55)2* (5 .5)  

The set of equations (5.3)-(5.5) enables us to find P4 as a function of x, by making 
use of table 1, which gives the variation of vE with x,. When x, = So/a,, the 
relevant value of p4 is -v4X5, corresponding to the streamline which enters IV, 
directly from V,. The constant P4(So/ao) is indeterminate but as explained 
earlier this is not significant at  the present stage of the asymptotic expansion. 
When x, is small, < 1 and so we have 

P4 % -q‘E/aagx:, u, z T4/aox4. (5.6) 

Further p4 T - (T:/TZ) C4COh)x~ (5.7) 

using (3.8) and (3.9), whereupon (3.9) reduces to a form agreeing with (2.7), 
thus establishing the consistency of the match between IV, and 111,. 

At x, = 6,/cz0, the slip velocity is zero from (4.10) but, at smaller values of x,, 
it  increases under the action of the favourable pressure gradient and eventually 
becomes singular at x4 = 0, as indicated by (5.6) and (5.7). A sub-boundary 
layer IV,, of thickness O(c3x<;), is therefore needed to reduce the slip velocity 
to zero. It generates a normal velocity O(e5U2) at the bottom of IV, which may 
be regarded as a small perturbation of the flow already found for that subregion. 
Near x, = S,/ao 

showing that the sub-boundary layer begins with a stagnation-point similarity 
solution. Near x4 = 0 it also takes on a similarity form, which is identical with 
that for 111,. In this form (Stewartson & Williams 1973) the vorticity decays 
algebraically as the similarity variable tends to infinity but this presents no 
matching difficulties with the solution in IV,. For (Brown & Stewartson 1965) 
this form of decay only occurs at x4 = 0 + , and at  all values of x4 > 0 the decay 
is exponential. Strictly the sub-boundary layer begins in region V but as ex- 
plained earlier the slip velocities are then O(e3U:) and negligible to leading order. 

6. The structure of regions VI and VII 
Region VI lies above the permeable part of the plate and its principal features 

have already been discussed in P. The top subregion (VI,) is a continuation of 
IV, and V,, the flow in it is inviscid and the only new property is that its lower 
boundary bends round under the influence of a favourable pressure gradient 
until it  is eventually parallel to the plate at  the termination of the blow. This 
pressure gradient is needed to drive the injected fluid downstream. The next 
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Inviscid flow, VII, 

Free shear layer, VII, 

4 

I VII, 

L------ c,.e------+ 

FIGURE 5. The subregions of V I I  (the termination of blowing). 

subregion down (VI,) is the continuation of the shear layer in IV, and V, and 
has the same properties. In  particular the evolution of vE is independent of the 
blow. The next, and lowest, subregion (VI,) contains the blown fluid; the x* 
component of velocity is O(eUz)  and its thickness is O(e2xz). The theory of P 
describes the flow in VI, to leading order and the presence of VI, causes per- 
turbations in u* of order e2Uz. Finally there is no need for a sub-boundary layer 
equivalent to IV,. 

At the end x* = x? of VI, the pressure is required to satisfy the condition 
p* - p z  = O(e3pz U z 2 )  and this fixes the value of x,*, the principal parameter of 
the problem not specified a priori. We wish to demonstrate here that the dis- 
continuity in the pressure gradient at  x* = x:, which is implied by this re- 
quirement, can be smoothed out by a transition region in the neighbourhood 

The various subregions of VI I  are shown in figure 5. Of these, VII, and VII, 
need no further comment. In  order to set up an appropriate structure for VII,, 
we write 

of x* = x;. 

x* = x;+e2x:x7, y* = €2XZY7, u* = &U~U,(Y,)+€3U~U7(X,,y7),  

v* = e3U:v7(x7, y7), p* = p z  + s4p; u:2p7(x,, Y,). 

HereeUz U,is thelimit ofthesolutionforu*inVI,atx = xf, andisknownfromP. 
The pressure in VI, is also known from P and we can write 

for its form when (x* - xT)/xz is small, where pB1 and 4, can be supposed known 
constants. 
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Then, in VII,, the governing equations reduce to 

together with the boundary conditions 

V,,O if y7 = 0, x 7 2 0 ,  

v 7 = {  0 if Y7 = S,, 

where e26,x; is the thickness of VI, at  x* = xT. On eliminating p7 from (6.3) 
we obtain 

(6.5) 

The coefficient of Y, on the right-hand side of (6.5) is finite at  y7 = 0,  even though 
U7(0) = 0,  and is equal to P62/Vk. As x7 -+-a, u7 -x7g;(q) remains finite and 
v7 -+ - U7(Y7), where . .  

'7('7) = % u 7 ( y 7 ) ~ ~ ~ ;  

as x, ++a, Y, + 0. Notice that D;(O) = 0. 
The solution of (6.5) requires knowledge of the behaviour of U, and in general 

can only be completed in numerical terms. However a representative form for 
U, is Asin(nY7/2SJ, where A is a constant; this form is proportional to the 
initial profile for u* in VI,. The solution of (6 .5)  now follows easily because the 
right-hand side reduces to - n2Y7/46,2. We write 

Then 

where 

x,D,(Y,) + Y- if x7 < 0, 

yi- if x7 > 0. 

if we use the representative form for U,, 

(6.8) 

According to this solution the tangential component of velocity is non-zero at 
Y, = 0, for 

u,(x7, 0) = F7(x7) = - nAn eTAnx7 in x7 0,  where A, = (ria1) (n2- $)4. 

(6.10) 

This slip velocity is reduced to zero in sublayers which take on different forms 
in x7 < 0 and in x7 > 0. Considering first x, < 0, we find that a sublayer VII, 

7 T m  

& n = 1  
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of thickness O(e3x:) is needed and that it is also inviscid in character and arises 
because the expansion (6.1) is non-uniform near Y7 = 0. We write €2, = &, 

(6.11) I U*/uz = €'U;(O) Z7+e36,(X,, 2,) + .. ., 
v*,/u$ = ~~v,+A~(x~,z,)+..., 

p* = p: + E4p: U:zp7(x7, 0) + E5p: U 3 , ( X 7 ,  2,) + . . . . 
On substituting these expansions into the full equations of motion, we obtain 

(6.12) 

The solution of (6.12) must satisfy the boundary conditions 8,(x7, 0) = %(x7, 0), 
o7(x,, co) = F7(x7) and 6,( - co, 2,) = 0. It is 

(6.13) 

Associated with this solution is a pressure gradient $j7 and an effective displace- 
ment thickness which serve to induce velocities O(e4U2) in VII,. 

A further non-uniformity occurs in the flow field in the neighbourhood of 
x7 = 0 whose structure cannot be resolved by boundary-layer considerations 
alone, but we shall not investigate its properties here. In  x, > 0 the sublayer 
needed to reduce the slip velocity (6.10) to zero takes on a double structure. 
The continuation of VII, is controlled by (6.12) except that V, is now zero and 
hence 

(6.14) 

= -z7~;(x7), $7 = constant in x7 > 0. J 
According to (6.9) and (6.14) 

av, 
U ,  - -log Z, + F7(xp) + constant, (6.15) 

as 2, + 0 and a further sublayer VII, is therefore needed to reduce o7 to zero 
at the plate. Viscous effects are significant in this sublayer and its thickness is 
O(E?X:). The governing equation is the boundary-layer equation, linearized 
about the uniform shear flow e2U: U;(O) 2, and, notwithstanding the singular 
behaviour of 8, as 2, -+ 0 in (6.15), its solution presents no formal difficulties. 

7r 

7. Conclusion 
With the discussion of VII, the study of the most significant regions of the 

flow field has been completed. The subsequent history of the flow field, down- 
stream of VII, is complicated but, with one proviso, has no bearing on the 
leading terms of the asymptotic expansion of the solution in the regions upstream 
of x:, since the pressure variation there is too small. Let us suppose, to fix 
matters, that the flow fields in y* > 0 and y* < 0 are mirror images, so that, 
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downstream of the trailing edge at xs = L, the appropriate conditions at y* = 0 
are v* = au*/ay* = 0. The change in the boundary conditions at (L, 0) necessitates 
the study of a new set of subregions in its neighbourhood, analogous to the triple 
deck discussed by Messiter (1970) and Stewartson (1969). Further downstream 
the shear layers in y* > 0 and y* < 0 continue to grow in width, entraining 
fluid from the slowly moving flow between them. In addition the fluid on the 
centre-line of this slowly moving subregion is being accelerated by viscous action, 
as in the Goldstein (1930) near-wake theory. 

In  order to discuss the final structure of the flow, however, we have to order 
the limits E + 0, x*/L -+ co, and this is the proviso mentioned earlier. I n  the 
present paper we shall take them in the order stated, or equivalently, take the 
view that our interest in the flow field ceases when x* is a large but finite multiple 
of L. Consideration of other limit orderings is more difficult and is deferred for 
the present. 

The main conclusions of this paper are that the model of the flow field assumed 
by P for strong plate-injection is justified and that it is possible to set up a formal 
expansion of the solution in powers of e, even though it is first necessary to 
divide the flow field into a large number of overlapping subregions. In  particular 
we have shown how the reversed flow set up in the triple deck at separation is 
fed by the injected fluid and how the flow field readjusts itself at the termination 
of the blow, so permitting the pressure gradient rapidly to fall to zero there. 
In  view of the consistency of the matches between the various subregions, we 
venture to claim that the structure found can form the basis of a strict mathe- 
matical conjecture about the nature of the solution of the Navier-Stokes equa- 
tions for this problem, as e -+ 0. 

The author is grateful to the Office of Naval Research for financial support 
during the time the research described here was carried out, and to Dr S. N. 
Brown for constructive criticism of this paper. 
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